Convex Set Operators and Polynomial Integer Minimization in Fixed Dimension

Robert Hildebrand

IFOR - ETH Zürich

Joint work with
Alberto Del Pia, Robert Weismantel and Kevin Zemmer
IBM ETH ETH
Polynomial IP
Consider the problem

\[
\min \{ f(x) : x \in P \cap \mathbb{Z}^n \},
\]

(1)

where \(P \) is the rational polyhedron \(P = \{ x \in \mathbb{R}^n : Ax \leq b \} \) with \(A \in \mathbb{Z}^{m \times n}, \ b \in \mathbb{Z}^m, \ f \in \mathbb{Z}[x] \) has degree \(d \).

- **Complexity:** We want time-complexity when input is binary encoding of \(A, b \) and the coefficients of \(f \).
- **Fixed:** Dimension \(n \), degree \(d \) of \(f \).

$$\min \quad (x^2 - ay - c)^2$$
$$1 \leq x \leq c - 1,$$
$$\frac{1-a}{b} \leq y \leq \frac{(c-1)^2-a}{b},$$
$$x, y \in \mathbb{Z}.$$

Implies AN1 problem - given three positive integers a, b, c, determine if there exist $x \in \mathbb{Z}$ such that $x^2 \equiv a \pmod{b}$ with $x < c$.

\[
\min (x^2 - ay - c)^2 \\
1 \leq x \leq c - 1, \\
\frac{1-a}{b} \leq y \leq \frac{(c-1)^2-a}{b}, \\
x, y \in \mathbb{Z}.
\]

Implies AN1 problem - given three positive integers a, b, c, determine if there exist $x \in \mathbb{Z}$ such that $x^2 \equiv a \pmod{b}$ with $x < c$.

2. [Del-Pia and Weismantel 2014] **Polynomial time** for quadratic polynomials in 2 variables.
Other complexity results

Negative

1. [Matiyasevich 1977, Jones 1982 (Hilbert’s 10th problem, 1900)]
 Undecidable in 58 variables with degree 4.

Positive

1. FPTAS for non-negative maximization in fixed dimension (DeLoera, Hemmeke, Köppe, Weismantel 2011)
2. NP Integer quadratic programming (Del Pia, Dey, Molinaro 2014)
f is a polynomial of degree d,

$$\min\{f(x) : x \in P \cap \mathbb{Z}^n\},$$

<table>
<thead>
<tr>
<th>gen.</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 58$</th>
<th>n fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 1$</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>$d = 2$</td>
<td>P</td>
<td>P</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>P</td>
<td>NPH</td>
<td>NPH</td>
<td>Und</td>
<td>Und</td>
</tr>
<tr>
<td>$d \geq 4$</td>
<td>P</td>
<td>NPH</td>
<td>NPH</td>
<td>Und</td>
<td>Und</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hom.</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 59$</th>
<th>n fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 1$</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>$d = 2$</td>
<td>P</td>
<td>P</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>P</td>
<td>NPH</td>
<td>Und</td>
<td>Und</td>
<td>Und</td>
</tr>
<tr>
<td>$d \geq 4$</td>
<td>P</td>
<td>NPH</td>
<td>Und</td>
<td>Und</td>
<td>Und</td>
</tr>
</tbody>
</table>
f is a polynomial of degree d,

$$\min\{f(x) : x \in P \cap \mathbb{Z}^n\},$$

<table>
<thead>
<tr>
<th>gen.</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 58$</th>
<th>n fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 1$</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>$d = 2$</td>
<td>P</td>
<td>P</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>P</td>
<td>P</td>
<td>NPH</td>
<td>NPH</td>
<td>Und</td>
</tr>
<tr>
<td>$d \geq 4$</td>
<td>P</td>
<td>NPH</td>
<td>NPH</td>
<td>Und</td>
<td>Und</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hom.</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 59$</th>
<th>n fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 1$</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>$d = 2$</td>
<td>P</td>
<td>P</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>P</td>
<td>P</td>
<td>NPH</td>
<td>Und</td>
<td>Und</td>
</tr>
<tr>
<td>$d \geq 4$</td>
<td>P</td>
<td>P/1</td>
<td>NPH</td>
<td>Und</td>
<td>Und</td>
</tr>
</tbody>
</table>
Main Results

Theorem (Del Pia, H., Weismantel, Zemmer)

The problem \(\min \{ f(x) : x \in P \cap \mathbb{Z}^2 \} \) is

1. polynomial time when \(f \) is cubic,
2. polynomial time when \(f \) is homogeneous, fixed degree, \(P \) is bounded,
3. "Intractable" when \(f \) is homogeneous, degree 4, \(P \) unbounded.
Main Results

Theorem (Del Pia, H., Weismantel, Zemmer)

The problem $\min\{f(x) : x \in P \cap \mathbb{Z}^2\}$ is

1. polynomial time when f is cubic,
2. polynomial time when f is homogeneous, fixed degree, P is bounded,
3. "Intractable" when f is homogeneous, degree 4, P unbounded.

"Intractable" := Requires compact representation.

$$\min\{(x^2 - Ny^2)^2 : (x, y) \in \mathbb{Z}_{\geq 1}^2\}, \quad N = 5^{2k+1}$$

- Optimal objective value is 1.
- Minimal size solution satisfies Negative Pell Equation $x^2 - Ny^2 = -1$.
- Lagarias (1980) - minimal solution has binary encoding size $\Omega(5^k)$.
Let $C \subseteq \mathbb{R}^n$ be a convex set.

- A function $f : C \rightarrow \mathbb{R}$ is quasi-convex on C if $\{x \in C : f(x) \leq \alpha\}$ is convex for all $\alpha \in \mathbb{R}$.

Lemma (Convex Lemma (Khachiyan-Porkolab 2000))

1. C is a bounded convex semi-algebraic set,
2. $f : \mathbb{R}^n \rightarrow \mathbb{R}$, polynomial, quasi-convex on C.

In polynomial time (fixed dimension), we can solve the problem

$$\min \{f(x) : x \in C \cap \mathbb{Z}^n\}.$$
Let $C \subseteq \mathbb{R}^n$ be a convex set.

- A function $f : C \to \mathbb{R}$ is quasi-concave on C if $\{x \in C : f(x) \geq \alpha\}$ is convex for all $\alpha \in \mathbb{R}$.

Lemma (Concave Lemma)

1. P a bounded polyhedron,
2. $f : P \to \mathbb{R}$, quasi-concave on P.

In polynomial time (fixed dimension), we can solve the problem

$$\min\{f(x) : x \in P \cap \mathbb{Z}^n\}.$$

Proof.

Let x^* be an optimal vertex. Then

$$P_I = \text{conv}(\text{vert}(P_I)) \subseteq \text{conv}(\{x : f(x) \geq f(x^*)\}) = \{x : f(x) \geq f(x^*)\}$$

Enumerate $\text{vert}(P_I)$ with Cook-Kannan-Hartman-McDiarmid (1992).
Quadratic Minimization Review

Del Pia-Weismantel (2014) - quadratic solved in polynomial time.

\[f(x, y) \approx x^2 + y^2 \]

Convex: Apply Khachiyan-Porkolab 2010 test feasibility + binary search.

\[f(x, y) \approx -x^2 - y^2 \]

Concave: implies solution on vertex of integer hull \(P_I \).

\[f(x, y) \approx x^2 - y^2 \]

Divide problem into quasi-convex and quasi-concave regions.
Homogeneous Case

\[f(x) \text{ homogeneous if} \]
\[f(\lambda x) = \lambda^d f(x) \text{ for all } \lambda \in \mathbb{R}. \]

\[f(x) \text{ homogeneous polynomial if} \]
\[\text{every monomial has the same degree, i.e., } f(x, y) = x^5 + 3y^2x^3. \]

Quasi-convex/Quasi-concave division

- Zeros occur on lines.
- Function no longer quasi-concave/quasi-convex in positive/negative regions.
- Domain can still be divided into quasi-concave/quasi-convex regions.
- Numerically approximate regions.
Homogeneous Case

\(f(\mathbf{x}) \) homogeneous if
\[
 f(\lambda \mathbf{x}) = \lambda^d f(\mathbf{x})
\]
for all \(\lambda \in \mathbb{R} \).

\(f(\mathbf{x}) \) homogeneous polynomial if every monomial has the same degree, i.e.,
\[
 f(x, y) = x^5 + 3y^2x^3.
\]

Quasi-convex/Quasi-concave division

- Zeros occur on lines.
- Function no longer quasi-concave/quasi-convex in positive/negative regions.
- Domain can still be divided into quasi-concave/quasi-convex regions.
- Numerically approximate regions.
Homogeneous Case

\[f(\mathbf{x}) \text{ homogeneous if } \]
\[f(\lambda \mathbf{x}) = \lambda^d f(\mathbf{x}) \text{ for all } \lambda \in \mathbb{R}. \]

\[f(\mathbf{x}) \text{ homogeneous polynomial if } \]
\[\text{every monomial has the same degree, i.e., } f(x, y) = x^5 + 3y^2x^3. \]

Quasi-convex/Quasi-concave division

- Zeros occur on lines.
- Function no longer quasi-concave/quasi-convex in positive/negative regions.
- Domain can still be divided into quasi-concave/quasi-convex regions.
- Numerically approximate regions.
Homogeneous Case

$f(x)$ homogeneous if
$f(\lambda x) = \lambda^d f(x)$ for all $\lambda \in \mathbb{R}$.

$f(x)$ homogeneous polynomial if every monomial has the same degree, i.e., $f(x, y) = x^5 + 3y^2x^3$.

Quasi-convex/Quasi-concave division

- Zeros occur on lines.
- Function no longer quasi-concave/quasi-convex in positive/negative regions.
- Domain can still be divided into quasi-concave/quasi-convex regions.
- Numerically approximate regions.

$(x + y)(x - y)(x^2 + y^2)^4$
Homogeneous Case

$f(x)$ homogeneous if
\[f(\lambda x) = \lambda^d f(x) \] for all \(\lambda \in \mathbb{R} \).

$f(x)$ homogeneous polynomial if every monomial has the same degree, i.e., \(f(x, y) = x^5 + 3y^2x^3 \).

Quasi-convex/Quasi-concave division

- Zeros occur on lines.
- Function no longer quasi-concave/quasi-convex in positive/negative regions.
- Domain can still be divided into quasi-concave/quasi-convex regions.
- Numerically approximate regions.

\[(x + y)(x - y)(x^2 + y^2)^4 \]
Homogeneous Case

\[f(x) \text{ homogeneous if } f(\lambda x) = \lambda^d f(x) \text{ for all } \lambda \in \mathbb{R}. \]

\[(x + y)(x - y)(x^2 + y^2)^4 \]

\[f(x) \text{ homogeneous polynomial if every monomial has the same degree, i.e., } f(x, y) = x^5 + 3y^2x^3. \]

Quasi-convex/Quasi-concave division

- Zeros occur on lines.
- Function no longer quasi-concave/quasi-convex in positive/negative regions.
- Domain can still be divided into quasi-concave/quasi-convex regions.
- Numerically approximate regions.
Bordered Hessian, Homogeneous, Volume Argument

1. Bordered Hessian

\[D_h = \det \left[\begin{array}{cc} 0 & \nabla h^T \\ \nabla h & \nabla^2 h \end{array} \right] \text{ hom.} \equiv -\frac{d}{d-1} h(x) \cdot \det(\nabla^2 h(x)) \]

2. \(D_h < 0 \Rightarrow \) quasi-convex while \(D_h > 0 \Rightarrow \) quasi-concave (\(\mathbb{R}^2 \) only).

3. \(D_h \equiv 0 \iff h(x) = (c^T x)^d \) (Hemmer, 1995)

4. \(D_h \) is a homogeneous polynomial \(\Rightarrow \) zeros occur on lines.
Bordered Hessian, Homogeneous, Volume Argument

1. **Bordered Hessian**

 \[D_h = \det \begin{bmatrix} 0 & \nabla h^T \\ \nabla h & \nabla^2 h \end{bmatrix} \overset{\text{hom.}}{=} \frac{-d}{d-1} h(x) \cdot \det(\nabla^2 h(x)) \]

2. \(D_h < 0 \Rightarrow \) quasi-convex while \(D_h > 0 \Rightarrow \) quasi-concave (\(\mathbb{R}^2 \) only).

3. \(D_h \equiv 0 \iff h(x) = (c^T x)^d \) (*Hemmer*, 1995)

4. \(D_h \) is a homogeneous polynomial \(\Rightarrow \) zeros occur on lines.

1. Compute zeros of \(D_h(x_1, \pm R) \) to appropriate accuracy

2. Create boxes containing zero lines

Lemma (BOWW 2013)

If \(C \subseteq \mathbb{R}^2 \) is convex, \(\text{vol}(C) < 1/2 \), then \(\dim(C \cap \mathbb{Z}^2) \leq 1 \).
Homogeneous Minimization

Theorem - Quasiconvex/Quasiconcave division

Let \(f \) be a homogeneous translatable polynomial. In polynomial time we can find a polynomial number of rational polyhedra \(P_i, Q_j \) and rational lines \(L_k \) such that

- \(f \) is quasi-convex on \(P_i \),
- \(f \) is quasi-concave on \(Q_j \), and

\[
P \cap \mathbb{Z}^2 = \left(\bigcup_{i=1}^{\ell_1} P_i \cup \bigcup_{j=1}^{\ell_2} Q_j \cup \bigcup_{k=1}^{\ell_3} L_k \right) \cap \mathbb{Z}^2.
\] (2)

Theorem - Homogeneous, Bounded

In polynomial time, we can minimize a homogeneous translatable polynomial of fixed degree in 2 variables over the integer points of a bounded polyhedron.
Let C be a convex semi-algebraic set. In fixed dimension, we can determine in polynomial time if the following sets are non-empty:

1. $\left(P \cap C \right) \cap \mathbb{Z}^n$ [KP, 2000]
2. $\left(P \setminus C \right) \cap \mathbb{Z}^n$ Enumerate vertices of P_I [CKHM, 1993]
Tools #2: Feasibility Using Convex Set Operator

Theorem: Convex Set Operator

Let C be a convex semi-algebraic set. In fixed dimension, we can determine in polynomial time if the following sets are non-empty:

1. $(P \cap C) \cap \mathbb{Z}^n$ [KP, 2000] “Quasiconvex"
2. $(P \setminus C) \cap \mathbb{Z}^n$ Enumerate vertices of P_I [CKHM, 1993] “Quasiconcave"
Tools #2: Feasibility Using Convex Set Operator

Theorem: Convex Set Operator

Let C be a convex semi-algebraic set. In *fixed dimension*, we can determine in polynomial time if the following sets are non-empty:

1. $(P \cap C) \cap \mathbb{Z}^n$
 [KP, 2000]
 “Quasiconvex"

2. $(P \setminus C) \cap \mathbb{Z}^n$
 Enumerate vertices of P_I
 [CKHM, 1993]
 “Quasiconcave"

Definition

A *division description* of $S_{\leq \omega}^f$ on P is a list of polyhedra P_i, Q_j and lines L_k that cover $P \cap \mathbb{Z}^2$ such that

1. $C := P_i \cap S_{\leq \omega}^f$ is convex

2. $C := Q_j \cap S_{> \omega}^f$ is convex
Tools #2: Division description
P_1, P_2, Q_1, Q_2, L_1 is a division description of $S_{\leq \omega}^f$.

1. $P_1 \cap S_{\leq \omega}^f$, $P_2 \cap S_{\leq \omega}^f$ are convex.
2. $Q_1 \cap S_{> \omega}^f$, $Q_2 \cap S_{> \omega}^f$ are convex.
3. $P \cap \mathbb{Z}^2 \subseteq P_1 \cup P_2 \cup Q_1 \cup Q_2 \cup L_1$
Tools #2: Division description

\[P_1, P_2, Q_1, Q_2, L_1 \] is a division description of \(\mathcal{S}_{\leq \omega} \).

1. \(P_1 \cap \mathcal{S}_{\leq \omega}, P_2 \cap \mathcal{S}_{\leq \omega} \) are convex.

2. \(Q_1 \cap \mathcal{S}_{> \omega}, Q_2 \cap \mathcal{S}_{> \omega} \) are convex.

3. \(P \cap \mathbb{Z}^2 \subseteq P_1 \cup P_2 \cup Q_1 \cup Q_2 \cup L_1 \)

Theorem: Division \(\Rightarrow \) Optimization

Suppose \(P \) is bounded and that for every \(\omega \in \mathbb{Z} + \frac{1}{2} \) we can compute a division description of \(\mathcal{S}_{\leq \omega} \) in polynomial time. Then, we can solve \(\min \{ f(x) : x \in P \cap \mathbb{Z}^n \} \) in polynomial time.
Cubic Minimization
Critically Affine

Definition
A function is said to be critically affine if its gradient vanishes exactly on a finite union of affine spaces.

Theorem
Suppose $f(x, y)$ is one of the following:

1. Cubic polynomial,
2. Homogeneous polynomial,
3. Separable polynomial.

Then $f(x, y)$ is critically affine.

NP-hard example

\[(x^2 - ay + c)^2\]

Gradient vanishes on the parabola
\[f(x, y) = f_0(x) + f_1(x)y + f_2(x)y^2 + f_3(x)y^3 \]

- **Constant-Cubic**
 \[f(x, y) = f_0(x) \]

Then the set \(\{(x, y) : f(x, y) \leq \omega\} \) is union of cylinders.

\[\Rightarrow \text{Division description is easy.} \]
\[f(x, y) = f_0(x) + f_1(x)y + f_2(x)y^2 + f_3(x)y^3 \]

- **Constant-Cubic**

\[f(x, y) = f_0(x) \]

Then the set \(\{(x, y) : f(x, y) \leq \omega\} \) is union of cylinders.

\[\Rightarrow \] Division description is easy.

- **Linear-Cubic**

\[f(x, y) = f_0(x) + f_1(x)y \]

Curve \(f(x, y) = \omega \), described by \(y = g(x) := (\omega - f_0(x))/f_1(x) \)

Find inflection points and vertical asymptotes of \(g(x) \) and divide into vertical cylinders about these points.
• Quadratic-Cubic

\[f(x, y) = f_0(x) + f_1(x)y + f_2(x)y^2 \]

Then \(f(x, y) = \omega \) on curves

\[y_{\pm} = \frac{-f_1 \pm \sqrt{f_1^2 - 4(f_0 - \omega)f_2}}{2(f_0 - \omega)} \]

1. Compute vertical asymptotes
2. Compute intersections of \(y_+, y_- \)
3. Compute inflection points (changes in concavity) of \(y_+, y_- \)
Quadratic-Cubic: Division Description

- **Quadratic-Cubic**

\[
\begin{align*}
f(x, y) &= f_0(x) + f_1(x)y + f_2(x)y^2
\end{align*}
\]

Then \(f(x, y) = \omega \) on curves

\[
y \pm \sqrt{\frac{f_1^2 - 4(f_0 - \omega)f_2}{2(f_0 - \omega)}}
\]

1. Compute vertical asymptotes
2. Compute intersections of \(y_+, y_- \)
3. Compute inflection points (changes in concavity) of \(y_+, y_- \)
4. Numerical approximations
Quadratic-Cubic: Division Description

- Quadratic-Cubic

\[f(x, y) = f_0(x) + f_1(x)y + f_2(x)y^2 \]

Then \(f(x, y) = \omega \) on curves

\[y_\pm = \frac{-f_1 \pm \sqrt{f_1^2 - 4(f_0 - \omega)f_2}}{2(f_0 - \omega)} \]

1. Compute vertical asymptotes
2. Compute intersections of \(y_+, y_- \)
3. Compute inflection points (changes in concavity) of \(y_+, y_- \)
4. Numerical approximations
Lemma

Any line can intersect a cubic level set at most 3 times.

NP-hard Quartic

\[(x^2 - ay + c)^2\]

Cubic Polynomials

- Concave/Concave
- Concave/Convex
- Convex/Concave

Robert Hildebrand (ETH)
Cubic-Cubic: Approximate Rotation to Quadratic-cubic

\[x^3 + y^3 + 9 \]

\[3u^2v - 3uv^2 + v^3 + 9 \]

\[x^3 + \delta x^2y + y^3 + 8.96 \]

\[0.05u^3 + 2.89u^2v - 2.95uv^2 + v^3 + 8.97 \]

Lemma

\[\{(x, y) \in P \cap \mathbb{Z}^2 : f(x, y) \leq \omega + \frac{1}{2}\} = \{(x, y) \in P \cap \mathbb{Z}^2 : f_\epsilon(x, y) \leq \omega + \frac{1}{2}\} \]
Cubic-Cubic: Approximate Rotation to Quadratic-cubic

\[x^3 + y^3 + 9 \]

\[3u^2v - 3uv^2 + v^3 + 9 \]

\[x^3 + \delta x^2y + y^3 + 8.96 \]

\[0.05u^3 + 2.89u^2v - 2.95uv^2 + v^3 + 8.97 \]

Lemma

\[\{(x, y) \in P \cap \mathbb{Z}^2 : f(x, y) \leq \omega + \frac{1}{2}\} = \{(x, y) \in P \cap \mathbb{Z}^2 : f_\varepsilon(x, y) \leq \omega + \frac{1}{2}\} \]
Cubic Minimization (Bounded)

Theorem - Cubic Division Description

Let f be a cubic polynomial in 2 variables with integer coefficients and let $\omega \in \mathbb{Z} + \frac{1}{2}$. In polynomial time, we can determine a division description of $S^f_{\leq \omega}$ on P.

Theorem - Cubic, Bounded

In polynomial time, we can minimize a cubic polynomial in 2 variables over the integer points of a bounded polyhedron.
Cubic Minimization (Unbounded)
Theorem: Cubic minimization unbounded

In polynomial time, we can either decide that the problem is unbounded, or find a polynomial size bound on the feasible region that must contain the optimal solution.

Case analysis:

\[
f(x, y) = \underbrace{(x^3 + xy^2)}_{h(x,y)} + \underbrace{(x^2 + xy - 3x + 2)}_{g(x,y)}
\]

Assume \(P \cap \mathbb{Z}^2 \neq \emptyset \) and \(\text{rec}(P) \neq \emptyset \) is pointed.

1. \(h(r) < 0 \) for some \(r \in \text{rec}(P) \)

Then

\[
f(x + \lambda r) = \lambda^3 h(r) + O(\lambda^2)\bar{g}(x, r) \approx \lambda^3 h(r) \to -\infty
\]

Problem is unbounded.
Case Analysis:

\[f(x, y) = \underbrace{x^3 + xy^2}_{h(x,y)} + \underbrace{x^2 + xy - 3x + 2}_{g(x,y)} \]

Assume \(P \cap \mathbb{Z}^2 \neq \emptyset \) and \(\text{rec}(P) \neq \emptyset \) is pointed.

1. \(h(r) > 0 \) for all \(r \in \text{rec}(P) \)
 - Find lower bound \(m \leq h(r) \) for all \(r \in \text{rec}(P) \) with \(||r|| = 1 \).
 - Use Rouche's Theorem
 - Find decomposition \(P = Q + \text{rec}(P) \), \(Q \) bounded, \(q \in Q \)

\[
 f(q + \lambda r) = \lambda^3 h(r) + O(\lambda^2) \bar{g}(q, r) \geq \lambda^3 m + O(\lambda^2) \bar{g}(q, r) \geq f(x)
\]

for all \(\lambda \geq M \).

- Problem is bounded by \(R := R_Q + M \)
Case analysis: \(f(x, y) = (x^3 + xy^2) + (x^2 + xy - 3x + 2) \)

Assume \(P \cap \mathbb{Z}^2 \neq \emptyset \) and \(\text{rec}(P) \neq \emptyset \) is pointed.

1. \(h(r) > 0 \) for all \(r \in \text{rec}(P) \)

 - Find lower bound \(m \leq h(r) \) for all \(r \in \text{rec}(P) \) with \(||r|| = 1 \).

 ⇒ Use Rouche’s Theorem

 - Find decomposition \(P = Q + \text{rec}(P) \), \(Q \) bounded, \(q \in Q \)

 \[
 f(q + \lambda r) = \lambda^3 h(r) + O(\lambda^2)\bar{g}(q, r) \geq \lambda^3 m + O(\lambda^2)\bar{g}(q, r) \geq f(x)
 \]

 for all \(\lambda \geq M \).

2. Problem is bounded by \(R := R_Q + M \)

3. \(h(r) \geq 0 \) for all \(r \in \text{rec}(P) \)

 Need to analyze \(r \) where \(h(r) = 0 \).
Homogeneous cubic polynomials

\[h(x, y) = \prod_{i=1}^{3} (a_i x + b_i y) \]

\[h(x, y) = (a_1 x + b_1 y)^2 (a_2 x + b_2 y) \]

\[h(x, y) = (a_1 x + b_1 y)^3 q(x, y) \]
Homogeneous cubic polynomials

\[h(x, y) = \prod_{i=1}^{3} (a_i x + b_i y) \]

\[h(x, y) = (a_1 x + b_1 y)^2 (a_2 x + b_2 y) \]

\[h(x, y) = (a_1 x + b_1 y)^3 \]

\[h(x, y) = (a_1 x + b_1 y) q(x, y) \]
Homogeneous cubic polynomials

\[h(x, y) = \prod_{i=1}^{3} (a_i x + b_i y) \]

\[h(x, y) = (a_1 x + b_1 y)^2 (a_2 x + b_2 y) \]

\[h(x, y) = (a_1 x + b_1 y)^3 \]

\[h(x, y) = (a_1 x + b_1 y)^q(x, y) \]
Case 3a: \(h \geq 0, \ h(r) = 0 \)

Lemma: Rational Zeros

If \(h(\tilde{r}_1, \tilde{r}_2) = 0 \), and \(h \geq 0 \) on all of \(\text{rec}(P) \), then \(\tilde{r}_1/\tilde{r}_2 \) is rational and it can be computed in polynomial time.
Case 3a: $h \geq 0, \ h(r) = 0$

Lemma: Rational Zeros

If $h(\bar{r}_1, \bar{r}_2) = 0$, and $h \geq 0$ on all of $\text{rec}(P)$, then \bar{r}_1/\bar{r}_2 is rational and it can be computed in polynomial time.

Fix $\bar{r} \in \text{rec}(P)$ with $h(\bar{r}) = 0$.
Case 3a: $h \geq 0, \ h(r) = 0$

Lemma: Rational Zeros

If $h(\bar{r}_1, \bar{r}_2) = 0$, and $h \geq 0$ on all of $\text{rec}(P)$, then \bar{r}_1/\bar{r}_2 is rational and it can be computed in polynomial time.

Fix $\bar{r} \in \text{rec}(P)$ with $h(\bar{r}) = 0$.

$$f(x + \lambda \bar{r}) = \lambda^2 g_{\bar{r},2}(x) + \lambda g_{\bar{r},1}(x) + g_{\bar{r},0}(x).$$
Case 3a: $h \geq 0, \ h(r) = 0$

Lemma: Rational Zeros

If $h(\bar{r}_1, \bar{r}_2) = 0$, and $h \geq 0$ on all of $\text{rec}(P)$, then \bar{r}_1/\bar{r}_2 is rational and it can be computed in polynomial time.

Fix $\bar{r} \in \text{rec}(P)$ with $h(\bar{r}) = 0$.

$$f(x + \lambda \bar{r}) = \lambda^2 g_{\bar{r},2}(x) + \lambda g_{\bar{r},1}(x) + g_{\bar{r},0}(x).$$

Note that

- $f(x + \mu \bar{r} + \lambda \bar{r}) = \lambda^2 g_{\bar{r},2}(x + \mu \bar{r}) + L.O.T.$
- $f(x + (\mu + \lambda) \bar{r}) = (\lambda + \mu)^2 g_{\bar{r},2}(x) + L.O.T.$

Matching terms on λ^2, we see that $g_{\bar{r},2}(x + \mu \bar{r}) = g_{\bar{r},2}(x)$.

$\Rightarrow g_{\bar{r},2}(x) = \bar{g}(x \cdot \bar{r}^\perp).$
Case 3a: $h \geq 0$, $h(r) = 0$

Lemma: Rational Zeros

If $h(\bar{r}_1, \bar{r}_2) = 0$, and $h \geq 0$ on all of $\text{rec}(P)$, then \bar{r}_1/\bar{r}_2 is rational and it can be computed in polynomial time.

Fix $\bar{r} \in \text{rec}(P)$ with $h(\bar{r}) = 0$.

$$f(x + \lambda \bar{r}) = \lambda^2 g_{\bar{r},2}(x) + \lambda g_{\bar{r},1}(x) + g_{\bar{r},0}(x).$$

Note that

- $f(x + \mu \bar{r} + \lambda \bar{r}) = \lambda^2 g_{\bar{r},2}(x + \mu \bar{r}) + L.O.T.$
- $f(x + (\mu + \lambda)\bar{r}) = (\lambda + \mu)^2 g_{\bar{r},2}(x) + L.O.T.$

Matching terms on λ^2, we see that $g_{\bar{r},2}(x + \mu \bar{r}) = g_{\bar{r},2}(x)$.

$$\Rightarrow g_{\bar{r},2}(x) = \bar{g}(x \cdot \bar{r}^\perp).$$

1. Handle separately $g_{\bar{r},2}(x) = 0$ on these lower dimensional slices.
2. If $\exists x$ with $g_{\bar{r},2}(x) < 0$, then problem is unbounded.
3. If all x satisfy $g_{\bar{r},2}(x) > 0$, then problem is bounded.

- If $g_{\bar{r},2}(x) \equiv 0$, then proceed with $g_{\bar{r},1}(x)$.
Case 3b: \(h \geq 0, \ h(r) = 0, \ g_{r,2}(x) \equiv 0 \)

- Suppose \(g_{r1,1} \neq 0 \).
- Show that \(g_{r1,1}(x + \mu r^1) = g_{1}^r(x) \).
- Compute \(g^* = \min\{g_{r1,1}(x) : x \in P_1 \cap \mathbb{Z}^2\} \)

1. Handle separately \(g^* = 0 \) on these lower dimensional slices.
2. If \(g^* > 0 \), then problem is **unbounded**.
3. If \(g^* < 0 \), then problem is **bounded**.

- If \(g_{r1,1}(x) \equiv 0 \), then proceed to easy Case 3c that can be solved easily since it follows that \(f(x) = f(x + \lambda r^1) \) for all \(\lambda \in \mathbb{R} \).
Theorem (Del Pia, H., Weismantel, Zemmer)

The problem \(\min \{ f(x) : x \in P \cap \mathbb{Z}^2 \} \) is

1. polynomial time when \(f \) is cubic,
2. polynomial time when \(f \) is homogeneous, fixed degree, \(P \) is bounded,
3. "Intractable" when \(f \) is homogeneous, degree 4, \(P \) unbounded.
Theorem (Del Pia, H., Weismantel, Zemmer)

The problem \(\min \{ f(x) : x \in P \cap \mathbb{Z}^2 \} \) is

1. polynomial time when \(f \) is cubic,
2. polynomial time when \(f \) is homogeneous, fixed degree, \(P \) is bounded,
3. "Intractable" when \(f \) is homogeneous, degree 4, \(P \) unbounded.

- Techniques apply to low rank minimization problem

\[
\min \{ f(x, y) : (x, y, z) \in P \cap \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}^n \}
\]
Open Questions

<table>
<thead>
<tr>
<th>gen.</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 58$</th>
<th>n fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 1$</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>$d = 2$</td>
<td>P</td>
<td>P</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>P</td>
<td>P</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$d \geq 4$</td>
<td>P</td>
<td>NPH</td>
<td>NPH</td>
<td>Und</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hom.</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 59$</th>
<th>n fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 1$</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>$d = 2$</td>
<td>P</td>
<td>P</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>P</td>
<td>P</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$d \geq 4$</td>
<td>P</td>
<td>P/ I</td>
<td>NPH</td>
<td>Und</td>
<td>Und</td>
</tr>
</tbody>
</table>

How to do get into 3-dimensions and higher?

Robert Hildebrand (ETH)
Open Questions

<table>
<thead>
<tr>
<th>gen.</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 58$</th>
<th>n fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 1$</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>$d = 2$</td>
<td>P</td>
<td>P</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>P</td>
<td>P</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$d \geq 4$</td>
<td>P</td>
<td>NPH</td>
<td>NPH</td>
<td>Und</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hom.</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 59$</th>
<th>n fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 1$</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>$d = 2$</td>
<td>P</td>
<td>P</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>P</td>
<td>P</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$d \geq 4$</td>
<td>P</td>
<td>P/1</td>
<td>NPH</td>
<td>Und</td>
<td>Und</td>
</tr>
</tbody>
</table>

How to do get into 3-dimensions and higher?
Thank you for listening!