Unique-Sink Orientations of Hypercubes and Linear Complementarity Problems

Jan Foniok
with Komei Fukuda, Bernd Gärtner, Lorenz Klaus, Hans-Jakob Lüthi

ODSA 2010
Unique-sink orientation — USO

an oriented graph with

- \(V = \{0, 1\}^n \)
- \(u \sim v \) iff in Hamming distance 1
Unique-sink orientation — USO

an oriented graph with

- $V = \{0, 1\}^n$
- $u \sim v$ iff in Hamming distance 1
- oriented so that every subcube has a unique sink

So the whole cube must have a unique sink
Unique-sink orientation — USO

an oriented graph with

- $V = \{0, 1\}^n$
- $u \sim v$ iff in Hamming distance 1
- oriented so that every subcube has a unique sink

So the whole cube must have a unique sink, but also proper subcubes, like this square.
Unique-sink orientation — USO

an oriented graph with

- $V = \{0, 1\}^n$
- $u \sim v$ iff in Hamming distance 1
- oriented so that every subcube has a unique sink

So the whole cube must have a unique sink, but also proper subcubes, like this square. And not two sinks.
Unique-sink orientation — USO

an oriented graph with

- $V = \{0, 1\}^n$
- $u \sim v$ iff in Hamming distance 1
- oriented so that every subcube has a unique sink

So the whole cube must have a unique sink, but also proper subcubes, like this square. And not two sinks. And not none.
Unique-sink orientation — USO

an oriented graph with
- \(V = \{0, 1\}^n \)
- \(u \sim v \) iff in Hamming distance 1
- oriented so that every subcube has a unique sink

So the whole cube must have a unique sink, but also proper subcubes, like this square. And not two sinks. And not none. Cycles may occur.
Goal: Find the sink

Input representation: by the vertex enumeration oracle: ask for the orientation of edges incident with a given vertex

Algorithm efficiency: number of oracle calls as function of dimension

Algorithms

Naive algorithm: check all vertices \((2^n \text{ queries})\)

Path-following algorithms: selection rule ??

“Random access” algorithms: seesaw
<table>
<thead>
<tr>
<th></th>
<th>deterministic</th>
<th>randomized</th>
</tr>
</thead>
<tbody>
<tr>
<td>general USOs</td>
<td>1.609^n</td>
<td>1.438^n</td>
</tr>
<tr>
<td>Szabó, Welzl</td>
<td>Szabó, Welzl, Rote</td>
<td></td>
</tr>
<tr>
<td>acyclic USOs</td>
<td>$\exp(2\sqrt{n})$</td>
<td>Matoušek, Sharir, Welzl, Gärtner</td>
</tr>
</tbody>
</table>
Why care?

Reductions from

- computing smallest enclosing ball of balls
- solving general linear and convex quadratic programs
- finding optimal strategies in simple stochastic games
- linear complementarity problems

Linear Complementarity Problem (LCP)

Given an $n \times n$ real matrix M, a real n-dimensional vector q, find two non-negative real n-dimensional vectors w, z such that

$$w - Mz = q \quad w^Tz = 0$$

5 / 15
Why care?

Reductions from
- linear complementarity problems

Linear Complementarity Problem (LCP)

Given
- an $n \times n$ real matrix M,
- a real n-dimensional vector q,

find
- two non-negative real n-dimensional vectors w, z such that

\[
\begin{align*}
 w - Mz &= q \\
 w^T z &= 0
\end{align*}
\]
\[w - Mz = q \]
\[w^T z = 0 \]
\[w - Mz = q \]
\[w^T z = 0 \]
Complexity

NP-complete to decide whether a solution exists

Unsolved case: P-matrices (P-LCP)

A P-matrix is a matrix whose principal minors are all positive.

Is there a polynomial-time algorithm for solving P-LCP?

Theorem (Samelson, Thrall, Wesler 1958; Ingleton 1966)

A matrix M is a P-matrix if and only if $\text{LCP}(M, q)$ has a unique solution for every vector q.
LCP Equations

\[
q = w - Mz \\
w^Tz = 0 \rightarrow w_i = 0 \text{ or } z_i = 0 \text{ for each } i
\]

Problem reduction

The hard part: determine whether \(w_i = 0 \) or \(z_i = 0 \) for each \(i \).
The rest is a system of linear equations.
LCP Equations

\[
q = w - Mz \\
w^T z = 0 \\
\rightarrow w_i = 0 \text{ or } z_i = 0 \text{ for each } i
\]

Problem reduction

The hard part: determine whether \(w_i = 0 \) or \(z_i = 0 \) for each \(i \).

The rest is a system of linear equations.

Inducing a USO

- a choice of \(w_i = 0 \) or \(z_i = 0 \) corresponds to a 0-1-vector
- solve equations: negative values \(\Rightarrow \) outgoing edges
- *for a P-matrix, this is a USO* [Stickney, Watson, 1978]
Some matrix classes

- **P-matrix**: all principal minors positive
- **K-matrix**: P-matrix and all off-diagonal elements ≤ 0

Not all USOs can arise from a P-matrix LCP...
Some matrix classes

P-matrix: all principal minors positive

K-matrix: P-matrix and all off-diagonal elements ≤ 0

Not all USOs can arise from a P-matrix LCP...

Some USO classes

P-USO: coming from a P-matrix LCP

K-USO: coming from a K-matrix LCP

... in fact, very few of them do.
Theorem (F., Fukuda, Gärtner, Lüthi, 2009)

Any path-following algorithm with any starting vertex finds the sink of any K-USO after at most $2n + 1$ oracle queries.

<table>
<thead>
<tr>
<th>00</th>
<th>00</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>01</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

The proof uses a K-matrix characterization of [Fiedler, Pták, 1962], but can also be done purely combinatorially (oriented matroids) [F., Fukuda, Klaus, 2010].
Theorem (F., Fukuda, Gärtner, Lüthi, 2009)

Any path-following algorithm with any starting vertex finds the sink of any K-USO after at most $2n + 1$ oracle queries.

Lemma

In any K-USO:

The proof uses a K-matrix characterization of [Fiedler, Pták, 1962], but can also be done purely combinatorially (oriented matroids) [F., Fukuda, Klaus, 2010].
Does the “Lemma” characterize K-USOs?

No. Because:

There are at least $2^{2^n / \text{poly}(n)}$ n-dimensional USOs satisfying the “Lemma”, but at most $2^{O(n^3)}$ P-USOs.
Does the “Lemma” characterize K-USOs?

No. Because:

There are at least $2^{2n/\text{poly}(n)}$ n-dimensional USOs satisfying the “Lemma”, but at most $2^{O(n^3)}$ P-USOs.

Proof of the upper bound (F., Gärtner, Klaus).

The orientation is determined by the signs of $2^n \cdot n$ values of polynomials in the entries of M and q. Each of the polynomials has degree at most n.

Theorem (Warren, 1968)

The number of distinct (nowhere-zero) sign patterns of s real polynomials in k variables, each of degree at most d, is at most $(4ed^s/k)^k$.
Counting USOs

<table>
<thead>
<tr>
<th>Class</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>all USOs [Matoušek]</td>
<td>(n^{\Omega(2^n)})</td>
<td>(n^{O(2^n)})</td>
</tr>
<tr>
<td>acyclic USOs [Matoušek]</td>
<td>(2^{2^n-1})</td>
<td>((n + 1)^{2^n})</td>
</tr>
<tr>
<td>satisfying “Lemma”</td>
<td>(2^{2^n}/\sqrt{n})</td>
<td></td>
</tr>
<tr>
<td>Holt–Klee USOs [Develin]</td>
<td>(2^{2^n}/\text{poly}(n))</td>
<td></td>
</tr>
<tr>
<td>P-USOs</td>
<td>(2^{\Omega(n^2)})</td>
<td>(2^{O(n^3)})</td>
</tr>
<tr>
<td>K-USOs</td>
<td>(2^{\Omega(n)})</td>
<td></td>
</tr>
</tbody>
</table>
Counting USOs

<table>
<thead>
<tr>
<th>class</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>all USOs [Matoušek]</td>
<td>(n^{\Omega(2^n)})</td>
<td>(n^{O(2^n)})</td>
</tr>
<tr>
<td>acyclic USOs [Matoušek]</td>
<td>(2^{2^n-1})</td>
<td>((n + 1)^{2^n})</td>
</tr>
<tr>
<td>satisfying “Lemma”</td>
<td>(2^{2^n/\sqrt{n}})</td>
<td></td>
</tr>
<tr>
<td>Holt–Klee USOs [Develin]</td>
<td>(2^{2^n/\text{poly}(n)})</td>
<td></td>
</tr>
<tr>
<td>P-USOs</td>
<td>(2^{\Omega(n^2)})</td>
<td>(2^{O(n^3)})</td>
</tr>
<tr>
<td>K-USOs</td>
<td>(2^{\Omega(n)})</td>
<td></td>
</tr>
</tbody>
</table>

Holt–Klee USOs

In every subcube of dimension \(d\) there are \(d\) vertex-disjoint directed paths from the (unique) source to the (unique) sink.

Every P-USO is Holt–Klee. [Gärtner, Morris, Rüst, 2008]
Counting USOs

<table>
<thead>
<tr>
<th>class satisfying “Lemma”</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2^{\left\lfloor \frac{n-1}{2} \right\rfloor}$</td>
<td></td>
</tr>
</tbody>
</table>

Lemma

In any K-USO:

![Diagram showing transitions in USOs]
P-USOs: A recursive construction

The P-matrix:

\[M = \begin{pmatrix} M' & 0 \\ m^T & 1 \end{pmatrix} \]

\[m_j = \begin{cases} (q_n + 1)M_{jj}'/q_j' & \text{if } s_j = -, \\ (q_n - 1)M_{jj}'/q_j' & \text{if } s_j = +, \end{cases} \]

\[q_n = \begin{cases} -1 & \text{if } s_n = -, \\ 1 & \text{if } s_n = +; \end{cases} \]

Every choice \(s \in \{-, +\}^n \) yields a different P-USO.
Conclusion: Why do I think it’s interesting?

- interplay of several areas of mathematics
 - linear algebra & (continuous) geometry
 - discrete geometry
 - algebraic geometry
 - combinatorics & order theory

- embarrassingly open complexity status
- strongly polynomial algorithm for linear programming ?!?

Some open problems

- complexity: Is P-matrix LCP PPAD-complete?
- counting: The number of USOs for a single P-matrix: $\Omega(2^{n^2})$?