Polynomial Pivoting for K-LCP
A Proof Using Unique-Sink Orientations

Jan Foniok
joint work with Komei Fukuda, Bernd Gärtner, Hans-Jakob Lüthi

Sixth Joint Operations Research Days, Lausanne
Linear Complementarity Problem (LCP)

Given

- an $n \times n$ real matrix M,
- a real n-dimensional vector q,

find

- two non-negative real n-dimensional vectors w, z such that

\[w - Mz = q \]
\[w^Tz = 0 \]
Applications

- quadratic programming
- bimatrix games
- control problems (parametric LCP)
Complexity

In general, LCP is NP-hard; it is NP-complete to decide whether a solution exists.
\[-m_2\]

\[-m_1\]
\[-m_2\]
\[-m_1\]
$e_1 \neq e_2 - m_2 - m_1$
Complexity

In general, LCP is NP-hard; it is NP-complete to decide whether a solution exists.

Unsolved case: P-matrices (P-LCP)

A P-matrix is a matrix whose principal minors are all positive.

Is there a polynomial-time algorithm for solving P-LCP?
Complexity

In general, LCP is NP-hard; it is NP-complete to decide whether a solution exists.

Unsolved case: P-matrices (P-LCP)

A **P-matrix** is a matrix whose principal minors are all positive.

Is there a polynomial-time algorithm for solving P-LCP?

Theorem (Samelson, Thrall, Wesler 1958; Ingleton 1966)

*A matrix M is a P-matrix if and only if $\text{LCP}(M, q)$ has a unique solution for every vector q.**
\[e_1 - e_2 - m_1 - m_2 \]
LCP Equations

\[q = w - Mz \]
\[w^Tz = 0 \]

Problem reduction

The hard part: determine whether \(w_i = 0 \) or \(z_i = 0 \) for each \(i \).

The rest is a system of linear equations.
Problem reduction

The hard part: determine whether \(w_i = 0 \) or \(z_i = 0 \) for each \(i \).

Simple principal pivoting methods

- start with an arbitrary complementary basis
- if not feasible, do a principal pivot:
 - insert a (negative) variable into the basis (pivot rule!)
 - remove the complementary variable from the basis
- repeat until solution is reached
Problem reduction
The hard part: determine whether \(w_i = 0 \) or \(z_i = 0 \) for each \(i \).

Simple principal pivoting methods

- start with an arbitrary complementary basis
- if not feasible, do a principal pivot:
 - insert a (negative) variable into the basis (pivot rule!)
 - remove the complementary variable from the basis
- repeat until solution is reached

Goal
A polynomial number of principal pivots (iterations).
Simple principal pivoting methods

- start with an arbitrary complementary basis
- if not feasible, do a principal pivot:
 - insert a (negative) variable into the basis (pivot rule!)
 - remove the complementary variable from the basis
- repeat until solution is reached
Simple principal pivoting methods

- start with an arbitrary complementary basis
- if not feasible, do a principal pivot:
 - insert a (negative) variable into the basis (pivot rule!)
 - remove the complementary variable from the basis
- repeat until solution is reached

Cube orientations

- represent each complementary basis with an \(n \)-dimensional 0, 1-vector
- 0, 1-vectors are vertices of the \(n \)-dimensional cube
- orient the edges in the direction of potential pivot steps
Cube orientations

- represent each complementary basis with an n-dimensional $0, 1$-vector
- $0, 1$-vectors are vertices of the n-dimensional cube
- orient the edges in the direction of potential pivot steps

Theorem (Stickney, Watson 1978)

The induced cube orientation for a non-degenerate P-LCP problem is a unique-sink orientation.
Cube orientations

- represent each complementary basis with an \(n \)-dimensional 0, 1-vector
- 0, 1-vectors are vertices of the \(n \)-dimensional cube
- orient the edges in the direction of potential pivot steps

Theorem (Stickney, Watson 1978)

The induced cube orientation for a non-degenerate P-LCP problem is a unique-sink orientation.

Unique-sink orientation (USO)

An orientation of the \(n \)-dimensional cube is a unique-sink orientation if every subcube has exactly one sink.
K-matrices

A **K-matrix** is a P-matrix whose off-diagonal elements are all non-positive. (K-LCP, K-USO)

Theorem (JF, Fukuda, Gärtner, Lüthi 2008)

In a K-USO:

- There are no directed cycles.
- Every directed path from the sink to the sink has length at most n.
- Every directed path has length at most $2n$.

Corollary

The simple principal pivoting method with any pivot rule solves K-LCP in at most $2n$ iterations.
K-matrices

A **K-matrix** is a P-matrix whose off-diagonal elements are all non-positive.

(K-LCP, K-USO)

Theorem (JF, Fukuda, Gärtner, Lüthi 2008)

In a K-USO:

- There are no directed cycles.
- Every directed path from 0 0 ... 0 to the sink has length at most \(n \).
- Every directed path has length at most \(2n \).
K-matrices

A **K-matrix** is a P-matrix whose off-diagonal elements are all non-positive. (K-LCP, K-USO)

Theorem (JF, Fukuda, Gärtner, Lüthi 2008)

In a K-USO:

- There are no directed cycles.
- Every directed path from 00...0 to the sink has length at most n.
- Every directed path has length at most $2n$.

Corollary

The simple principal pivoting method with any pivot rule solves K-LCP in at most $2n$ iterations.
Deterministic vs. randomised pivot rules

- There tends to be a “bad example” for any studied deterministic pivot rule.
- Therefore examine **randomised pivot rules**, analyse **expected** running time.
Deterministic vs. randomised pivot rules

- There tends to be a “bad example” for any studied deterministic pivot rule.
- Therefore examine \textit{randomised pivot rules}, analyse \textit{expected} running time.

Open problems

- Is there a polynomial-time algorithm for P-LCP?
- Is there a deterministic pivot rule with which simple principle pivoting needs a polynomial number of iterations?
- Is there a randomised pivot rule with a polynomial expected number of iterations?
- In particular, is \textsc{Random Permutation} such a rule?